NATIONAL EDUCATION POLICY-2020

Syllabus of

BACHELOR'S DEGREE

 and
BACHELOR'S DEGREE WITH HONOURS

in

MATHEMATICS

Sridev Suman Uttarakhand University Badshahi Thaul (Tehri Garhwal) Uttarakhand -249199
(State University of Uttarakhand)
2023

Syllabus of

BACHELOR'S DEGREE
(First Three Years of Higher Education)
and

BACHELOR'S DEGREE WITH HONOURS

(First Four Years of Higher Education)
in

MATHEMATICS

(Revised in Board of Studies on July 11, 2023)

Curriculum Design Committee, Uttarakhand

S. No.	Name \& Designation	Chairman
$\mathbf{1 .}$	Prof. N.K. Joshi Vice-Chancellor, Sridev Suman Uttarakhand University, Badshahi Thaul, Tehri Garhwal, Uttarakhand	Member
$\mathbf{2 .}$	Prof. Manmohan Singh Chauhan Vice-Chancellor, Kumaon University, Nainital,Uttarakhand	Member
$\mathbf{3 .}$	Prof. O.P.S. Negi Vice-Chancellor, Uttarakhand Open University	Member
$\mathbf{4 .}$	Prof. Jagat Singh Bisht, Vice-Chancellor, Soban Singh Jeena University, Almora	Member
$\mathbf{5 .}$	Prof. Surekha Dangwal Vice-Chancellor, Doon University, Dehradun	Member
$\mathbf{6 .}$	Prof. M.S.M. Rawat Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member
7.	Prof. K.D. Purohit Advisor Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	

Sridev Suman Uttarakhand University Badshahi Thaul, Tehri Garhwal (Uttarakhand)

Department of Mathematics

Members of Board of Studies

S.N.	Name	Designation	Department	Board of Studies
1.Prof. G. K. Dhingra	Dean Faculty of Science Pt. L.M.S. Campus Srider Suman Utarakhand University Rishikesh	Faculty of Science	Chairman	
2.	Director	Uttarakhand Science Education and Research Council	USERC	Member

Syllabus Preparation Committee

S. No.	Name	Designation	Department	Affiliation
1.	Prof. Anita Tomar	Professor \& Head	Mathematics	Pt. L.M.S. Campus, Sridev Suman Uttarakhand University Rishikesh
2.	Prof. Dipa Sharma	Professor	Mathematics	Pt. L.M.S. Campus, Sridev Suman Uttarakhand University Rishikesh
3.	Dr. Gaurav Varshney	Associate Professor	Mathematics	Pt. L.M.S. Campus, Sridev Suman Uttarakhand University Rishikesh
4.	Dr. Dhirendra Singh	Assistant Professor	Mathematics	Pt. L.M.S. Campus, Sridev Suman Uttarakhand University Rishikesh
5.	Dr. Sudhir Petwal	Assistant Professor	Mathematics	A.P.B Govt. (P.G.) College Agastyamuni
6.	Dr. Deepak Singh	Assistant Professor	Mathematics	B.L.J. Govt. (P.G.) College Purola, Uttarkashi

SEMESTER WISE COURSES IN UG MATHEMATICS PROGRAMS					
YEAR	SEMESTER	$\begin{gathered} \hline \text { COURSE } \\ \text { CODE } \end{gathered}$	PAPER TITLE	$\begin{gathered} \text { THEORY/ } \\ \text { PRACTICAL } \\ \hline \end{gathered}$	CREDIT
CERTIFICATE COURSE IN MATHEMATICS					
$\begin{aligned} & \text { FIRST } \\ & \text { YEAR } \end{aligned}$	I	UGMAT101T	Matrices, Trigonometry and Differential Calculus	THEORY	4
		UGMAT102P	Practical	PRACTICAL	2
	II	UGMAT201T	Integral Calculus and Vector Analysis	THEORY	6
DIPLOMA IN MATHEMATICS					
$\begin{aligned} & \text { SECOND } \\ & \text { YEAR } \end{aligned}$	III	UGMAT301T Abstract Algebra: Part A - Group Theory Part B - Ring Theory		THEORY	6
	IV	UGMAT401T	Differential Equations: Part A - Ordinary Differential Equations Part B - Partial Differential Equations	THEORY	6
DEGREE IN MATHEMATICS					
THIRD YEAR	V	UGMAT501T	Analysis: Part A - Real Analysis Part B - Complex Analysis	THEORY	5
		UGMAT502T UGMAT503T UGMAT504T UGMAT505T UGMAT506T UGMAT507T	Any one of the following- (i) Mathematical Methods (ii) Number Theory and Relativity (iii) Analytical Geometry (iv) Numerical Analysis (v) Graph Theory (vi) Mechanics	THEORY	5
	VI	UGMAT601T	Linear Programming Problem	THEORY	5
		UGMAT602T	$\underline{\text { Linear Algebra }}$	THEORY	5
HONOURS DEGREE IN MATHEMATICS					
$\begin{gathered} \text { FOURTH } \\ \text { YEAR } \end{gathered}$	VII	MTH101	Discrete Mathematics	THEORY	5
		MTH102	Abstract Algebra	THEORY	5
		MTH103	Real Analysis	THEORY	5
		MTH104	Differential Geometry and Tensor Calculus	THEORY	5
		MTH105	Research Project	PROJECT	4
	VIII	MTH201	Linear Algebra	THEORY	5
		MTH202	Complex Analysis	THEORY	5
		MTH203	Differential Equations	THEORY	5
		MTH204	Operations Research I	THEORY	5
		MTH205	Research Project	PROJECT	4
MINOR/ADDITIONAL/INTERDISCIPLINARY / MULTIDISCIPLINARY COURSE IN MATHEMATICS					
FIRST YEAR	I/II	MEC01	Probability	THEORY	4
SECOND YEAR	III/IV	MEC02	Financial Mathematics	THEORY	4
$\begin{gathered} \text { FOURTH } \\ \text { YEAR } \\ \hline \end{gathered}$	VII/ VIII	MEC03	Research Methodology	THEORY	4

AS PER NEP 2020 GUIDELINES GENERAL OVERVIEW

Programme Outcome/Programme Specific Outcome

Programme Outcome:

- PO1: It is to give in-depth knowledge of geometry, algebra, calculus, differential equations, and several other branches of pure and applied mathematics. This also leads to study the related areas such as computer science and other allied subjects.
- PO2: The skills and knowledge gained in this program will be helpful for modeling and solving real life problems.
- PO3: Students will become employable in various government and private sectors.
- PO4: The completing this programme develop enhanced quantitative skills and pursuing higher mathematics and research as well.
- PO5: The completion of this programme will enable the learner to use appropriate digital programmes and software to solve various mathematical problems.

Programme Specific Outcome:

- PSO1: Student will be able to think in a critical manner and develop problem solving skills.
- PSO2: Students will be able to recall basic facts about mathematics and display knowledge of conventions such as notations, terminology etc.
- PSO3: Students will be able to formulate and develop mathematical arguments in a logical manner.
- PSO4: Students will be motivated and prepare for research studies in mathematics and related fields.
- PSO5: Student will be able to apply their skills and knowledge in various fields of studies including science, engineering, commerce, and management etc.

GRADUATION -1 ${ }^{\text {st }}$ Year (SEMESTER-I)
 PAPER-I: Matrices, Trigonometry and Differential Calculus

Part-B: Trigonometry			
Unit	Topics	No. of Lectures	
IV	Trigonometric or circular and hyperbolic function of complex variable together with their inverses, De Moivre's Theorem and its applications, Euler's theorem, relation between trigonometric and hyperbolic function, Exponential function of a complex variable, Logarithms of complex variable, Properties of logarithmic function, Separation into real and imaginary parts	6	
V	Gregory's series, Value of π by different series, Summation of Trigonometric series by C+iS method based on Arithmetic Progression, Geometric Progression, Logarithms and Binomial expansions, Summation of Trigonometric series by difference method.	$\mathbf{6}$	

Suggested Readings (PART-A Matrices):

1. Hari Kishan, A Textbook of Matrices, Atlantic Publishers, 2008
2. Fuzhen Zhang, Matrix Theory- Basic Results and Techniques, Springer, 1999
3. Shanti Narayan, P.K. Mittal, A Textbook of Matrices, S Chand \& Company, 2010
4. Suggested digital platform: NPTEL/SWAYAM/MOOCs

Suggested Readings (PART-B Trigonometry):

1. Margaret L. Lial, John Hornsby, David I. Schneider, Trigonometry, Addison-Wesley, 2001
2. Robert Moyer, Frank Aryes, Schaum's Outline of trigonometry, 2012
3. I. M. Gelfand, Mark Saul, Trigonometry, Birkhäuser; 2001st edition (June 8, 2001)
4. Suggested digital platform: NPTEL/SWAYAM/MOOCs

Suggested Readings (Part- C Differential Calculus):

1. R.G. Bartle \& D.R. Sherbert, Introduction to Real Analysis, John Wiley \& Sons, 1999
2. T.M. Apostal, Calculus Vol. I, John Wiley \& Sons Inc., 1974
3. Ajit Kumar and S. Kumaresan, A Basic Course in Real Analysis, CRC Press, 2019
4. S. Balachandra Rao \& C. K. Shantha, Differential Calculus, New Age Publication. 1992
5. H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc. 2007
6. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2010
7. Suggested digital platform: NPTEL/SWAYAM/MOOCs

This course can be opted as an elective by the students of following subjects: Engineering and Technology(UG), Chemistry/ Biochemistry/ Life Sciences (UG), Economics (UG/PG), Commerce (UG), BBA/ BCA, B.Sc. (C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25

S.N.	Assessment Type	Max. Marks
$\mathbf{1}$	Class Tests	$\mathbf{1 0}$
$\mathbf{2}$	Online Quizzes/Objective Tests/ Presentation	$\mathbf{5}$
$\mathbf{3}$	Attendance	$\mathbf{5}$
$\mathbf{4}$	Assignment	$\mathbf{5}$
Course perquisites: To study this course a student must have studied Mathematics in class $12^{\text {th }}$.		

GRADUATION - $1^{\text {st }}$ Year (SEMESTE R-I)

Paper-II - Practical

GRADUATION -1 ${ }^{\text {st }}$ Year (SEMESTER-II)

PAPER-I: Integral calculus and Vector Analysis

PART-A: Integral Calculus		
Unit	Topics	No of Lectures
I	Integral as a limit of sum, Properties of Definite integrals, Fundamental theorem of integral calculus, Summation of series byintegration, Infinite integrals, Differentiation, and integration under the integral sign.	$\mathbf{1 2}$
II	Beta function, Properties and various forms, Gamma function, Recurrence formula and other relations, Relation between Beta and Gamma function, Evaluation of integrals using Beta and Gamma functions.	$\mathbf{1 1}$
III	Double integrals, Repeated integrals, Evaluation of Double integrals, Double integral in polar coordinates, change of variables, Change of order of integration in Double integrals, Triple integrals, Evaluation of Triple integrals, Dirichlet's theorem and its Liouville's extension.	$\mathbf{1 2}$
IV	Area bounded by curves (quadrature), Rectification (length of curves), Volumes and Surfaces of Solids of revolution.	$\mathbf{1 1}$

PART- B: Vector Analysis		No. of Lectures
Unit	Topics	$\mathbf{1 1}$
\mathbf{V}	Triple product, Reciprocal vectors, Product of four vectors, General equation of a Plane, Normal and Intercept forms, Two sides of a plane, Length of perpendicular from a point to a plane, Angle between two planes, System of planes.	$\mathbf{1 2}$
VI	Direction Cosines and Direction ratios of a line, Projection on a straight line, Equation of a line, Symmetrical and unsymmetrical forms, Angle between a line and a plane, Coplanar lines, Lines of shortest distance, Length of perpendicular from a point to a line,Intersection of three planes, Transformation of coordinates.	$\mathbf{1 1}$
VII	Ordinary differentiation of vectors, Velocity and Acceleration, Differential operator-Del, Gradient, Divergence and Curl.	$\mathbf{1 0}$
VIII	Line, Surface and volume integrals, Simple applications of Gauss divergence theorem, Green's theorem and Stokes theorem (withoutproof).	

Suggested Readings (Part- A Integral Calculus):

1. T.M. Apostal, Calculus Vol. I, John Wiley \& Sons Inc., 1974
2. H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc. 2007
3. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2010
4. Suggested digital platform: NPTEL/SWAYAM/MOOCs

Suggested Readings (Part- B Vector Analysis):

1. Murray R. Spiegel: Vector Analysis, Schaum's Outline Series, McGraw Hill.
2. N. Saran and S. N. Nigam: Introduction to Vector Analysis, Pothishala Pvt. Ltd. Allahabad.
3. Suggested digital platform: NPTEL/SWAYAM/MOOCs

This course can be opted as an elective by the students of following subjects: Engg. and Tech. (UG), B.Sc. (C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: $\mathbf{2 5}$				
S.No.	Assessment Type	Max. Marks		
$\mathbf{1}$	Class Tests	$\mathbf{1 0}$		
$\mathbf{2}$	Online Quizzes/Objective Tests/ Presentation	$\mathbf{5}$		
$\mathbf{3}$	Attendance	$\mathbf{5}$		
$\mathbf{4}$	Assignment	$\mathbf{5}$		
Course prerequisites: To study this course a student must have studied Mathematics in class $12^{\text {th }}$				

Detailed Syllabus

For

DIPLOMA
IN
MATHEMATICS
GRADUATION- $2^{\text {nd }}$ Year
(Semester: III and IV)

GRADUATION -2 ${ }^{\text {nd }}$ Year (SEMESTER-III)

PAPER-I: Abstract Algebra

Programme: DIPLOMA IN MATHEMATICS

Year: Second
Semester: Third
Subject: Mathematics

Course Code: UGMAT301T

Course Title: Abstract Algebra

Course outcomes:

CO1: Understanding of abstract algebraic structures: Students will gain a strong understanding of groups, rings, and fields, including their definitions, properties, and examples.
CO2: Proficiency in proof techniques: Students will develop the ability to construct rigorous proofs using various techniques specific to abstract algebra.
CO3: Application of abstract algebra in problem-solving: Students will apply abstract algebraic concepts to solve problems in different mathematical contexts, such as symmetry, isomorphism, factorization, and polynomial rings.

Suggested Readings:

1. Dammit and Foote, Abstract Algebra, 3rd Edition, 2003.
2. J. B. Fraleigh, A first course in Abstract Algebra, Addison-Wiley, 2003
3. I. N. Herstein, Topics in Algebra, John Wiley \& Sons, 2006
4. Thomas W Hungerford, Abstract Algebra-An Introduction, Sauders College Publishing, 1990
5. Joseph A Gallian, Contemporary Abstract Algebra, Brooks/Cole Cengage Learning, 2016
6. V. K. Ghana and S. K. Bhambri, A course in Abstract Algebra, Vikas Publishing House Pvt (Ltd), 2014.
7. Suggested digital platform: NPTEL/SWAYAM/MOOCs.

Suggested Continuous Evaluation Methods: Max. Marks:25

Suggested Continuous Evaluation Methods: Max. Marks:25		
S.No.	Assessment Type	Max. Marks
1	Class Tests	$\mathbf{1 0}$
2	Online Quizzes/Objective Tests/ Presentation	5
3	Attendance	5
4	Assignment	5

Course prerequisites: To study this course, a student must have Certificate Course in Mathematics.

GRADUATION -2 ${ }^{\text {nd }}$ Year (SEMESTE R-IV)

PAPER-I: Differential Equations

Programme: DIPLOMA IN MATHEMATICS	Year: Second	Semester: Fourth
Subject: Mathematics		
Course Code: UGMAT401T	Course Title: Differential Equations	
Course outcomes:		
CO1: The objective of this course is to familiarize the students with various methods of solving differential equations of first and second		
order and to havequalitative applications.		
CO2: A student doing this course can solve differential equations and is able to model problems in nature using ordinary differential		
equations. Aftercompleting this course, a student will be able to take more courses on wave equation, heat equation, diffusion equation,		
gas dynamics, nonlinear evolution equation etc.		

Detailed Syllabus
 For DEGREE IN
 MATHEMATICS
 GRADUATION-3 ${ }^{\text {rd }}$ Year (Semester- V and VI)

GRADUATION- $3^{\text {rd }}$ Year (SEMESTER-V)

PAPER-I: Analysis

[^0]Suggested Continuous Evaluation Methods: Max. Marks: 25

S. No.	Assessment Type	Max. Marks
1	Class Tests	10
2	Online Quizzes/Objective Tests/ Presentation	5
3	Attendance	5
4	Assignment	5

Course prerequisites: To study this course, a student must have Diploma in Mathematics.

GRADUATION-3 ${ }^{\text {rd }}$ Year (SEMESTER-V)

PAPER-II: Mathematical Methods

Programme: DEGREE IN MATHEMATICS		Year: Third	Sem	r: Fifth
Subject: Mathematics				
Course Code: UGMAT502T		Course Title: Mathematical Methods		
Course outcomes: CO1: The student will be able to find the integral transform, Laplace transform, inverse Laplace transform and Fourier transform. The course in mathematicalmethods basically develops a problem-solving skill in the students. CO2: Upon successful completion, students will have the knowledge of various types of graphs, their terminology, and applications.				
Credits: 5		Core Compulsor		
Max. Marks: 25+75 Min. Passing Marks: As per University				
Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: (5-0-0)				
Course Title: Mathematical Methods				
Unit	Topics			No. of Lec
I	Laplace Transforms: Definition, Kernel transforms of elementary functions, Hea Second Shifting Theorem, Initial-Value derivatives, integrals, and Periodic functio	e theorem, Line Delta Functions, e Theorem, The	place orem, m of \qquad	25
II	Inverse Laplace transforms: Inverse Lapl using partial fractions, Convolution, Sol Laplace transforms. Dirichlet'scondition,	le functions, Inv and integro-diff	$\begin{aligned} & \text { forms } \\ & \text { using } \end{aligned}$	25
III	Fourier Transforms: Fourier Complex Fourier Transforms, Inverse Fourier transf	ne and cosine t		10
IV	Applications of Fourier transform to simp Laplace equations, Z Transform, and its a	at transfer equati erence equations.	s and	15

Suggested Readings (Part-A Mathematical Methods):

1. Murry R. Spiegal: Laplace Transform (SCHAUM Outline Series), McGraw-Hill.
2. J. F. James: A student's guide to Fourier transforms, Cambridge University Press.
3. Ronald N. Bracewell: The Fourier transforms and its applications, Mcgraw Hill.
4. J. H. Davis: Methods of Applied Mathematics with a MATLAB Overview, Birkhäuser, Inc.,Boston, MA, 2004.
5. Suggested digital platform: NPTEL/SWAYAM/MOOCs

This course can be opted as an elective by the students of following subjects: Engg. and Tech.(UG), BCA, B.Sc.(C.S.)

Suggested Continuous Evaluation Methods: Max. Marks: 25				
S. No.	Assessment Type	Max. Marks		
$\mathbf{1}$	Class Tests	$\mathbf{1 0}$		
$\mathbf{2}$	Online Quizzes/Objective Tests/ Presentation	$\mathbf{5}$		
$\mathbf{3}$	Attendance	$\mathbf{5}$		
$\mathbf{4}$	Assignment	$\mathbf{5}$		
Course prerequisites: To study this course, a student must have Diploma in Mathematics.				

GRADUATION -3 ${ }^{\text {rd }}$ Year (SEMESTER-V)

PAPER-II: Number Theory \& Relativity

Programme: DEGREE IN MATHEMATICS	Year: Third	Semester: Fifth
Subject: Mathematics		
Course Code: UGMAT503T	Course Title: Number Theory \& Relativity	
Course outcomes: CO1: The student will be able to solve problems in elementary number theory and also apply elementary number theory to cryptography. CO2: Upon successful completion, students will be able to describe the basic concepts of the theory of relativity. CO3: After Successful completion of this course students will be able to discuss postulates of the special theory of relativity and their consequences.		

PART-B: Relativity

Unit	Topics	No. of Lectures
IV	Special Relativity: Inertial Frames of reference, Michelson-Morley experiment, Doppler effect, Stellar aberration, Simultaneity, Postulates of special relativity, Lorentz transformation, Length contraction, Time dilation, Clock paradox, Addition of velocities and accelerations, Four- dimensional space time, Light cone, Mass variation, Velocity four vector, Momentum and force, Mass-Energy relationship.	$\mathbf{1 8}$
V	General Relativity: Geodesics, Geodesic coordinates, Curvature tensor and its algebraic properties, Bianchi's identities, Contracted curvature tensor, Conditions for a flat space time, Displacement of space -time, Killing equations, Groups of motion,Space-time of constant curvature.	$\mathbf{1 1}$
VI	Principal of covariance, non-inertial frames of reference, Principal of equivalence, Weak field approximation of geodesic equations, Law of gravitation in empty space-time, Canonical coordinates, Schwarzschild solutions.	$\mathbf{1 6}$

GRADUATION - $\mathbf{3}^{\text {rd }}$ Year (SEMESTER-V)

PAPER-II: Analytical Geometry

GRADUATION- $3^{\text {rd }}$ Year (SEMESTER-V)
 PAPER-II: Numerical Analysis

GRADUATION- $3^{\text {rd }}$ Year (SEMESTER-V)
 PAPER-II: Graph Theory

Suggested Readings (Part-B Graph Theory):

1. Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science, Dover Publications, 2017.
2. Douglas B West, Introduction to Graph Theory, Pearson, 2018.
3. Santanu Saha Ray, Graph Theory with Algorithms and Its Applications: In Applied Science and Technology, Springer India, 2012.
4. Suggested digital platform: NPTEL/SWAYAM/MOOCs

This course can be opted as an elective by the students of following subjects: Engg. and Tech.(UG), BCA, B.Sc.(C.S.)
Suggested Continuous Evaluation Methods: Max. Marks: 25

S. No	Assessment Type	Max. Marks
$\mathbf{1}$	Class Tests	$\mathbf{1 0}$
$\mathbf{2}$	Online Quizzes/Objective Tests/ Presentation	$\mathbf{5}$
$\mathbf{3}$	Attendance	$\mathbf{5}$
$\mathbf{4}$	Assignment	$\mathbf{5}$
Course prerequisites: To study this course, a student must have Diploma in Mathematics.		

GRADUATION- $3^{\text {rd }}$ Year (SEMESTER-V)

PAPER-II: Mechanics

Course outcomes:

CO1: The object of the paper is to give students knowledge of basic mechanics such as simple harmonic motion, motion under other laws and forces.
CO2: The student, after completing the course can go for higher problems in mechanic such as hydrodynamics, this will be helpful in getting employment inindustry.

Credits: 5	Core Compulsory / Elective
Max. Marks: 25+75	Min. Passing Marks: As per University norms
Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: (5-0-0)	

GRADUATION- $3^{\text {rd }}$ Year (SEMESTER-VI)

PAPER-I: Linear Programming Problem

GRADUATION- ${ }^{\text {rd }}$ Year (SEMESTER-VI)

PAPER-II: Linear Algebra

Detailed Syllabus

For

HONOURS DEGREE
 IN
 MATHEMATICS

GRADUATION-4 ${ }^{\text {th }}$ Year (Semester -VII \& VIII)

VII Semester

MTH101 - Discrete Mathematics

Unit 1. Principle of mathematical induction partially ordered sets, Lattices: Lattices as partially ordered sets, Their Properties, Lattices, and algebraic systems, Principle of duality, Sub lattices, Complete, Complemented and Distributive lattices.
Unit 2. Boolean algebra, Boolean functions, Boolean expressions, Applications to switching circuits.
Unit 3. Elements of graph theory: Basic terminology, Paths and circuits, Eulerian and Hamiltonian graphs, planar graphs, Directed graphs.
Unit 4. Trees: Rooted trees, Path lengths, spanning trees, minimum spanning trees.

Books Recommended:

C. L. Liu: "Elements of Discrete Mathematics", Tata McGraw Hill Education,2008.

Ram Babu: "Discrete Mathematics", Pearson Edition India, 2011.
Lipschutz: "Discrete Mathematics", Tata McGraw Hill, 2011.

MTH102 - Abstract Algebra

Unit 1. Introductions of group, Relation of conjugacy, Conjugate class of a group, Class equation, Lagrange's theorem, Cayley's theorem, Sylow's theorem and its applications.
Unit 2. Normal and subnormal series, Composition series, Jordan Holder theorem, Chain conditions, Commutators. Solvable groups, solvability of subgroups and factor groups, Nilpotent groups, and their equivalent characterizations. Unit 3. Rings, ideals, prime and maximal ideals, quotient rings. Factorization theory in commutative domains, Prime and irreducible elements, Euclidean Domains, Principal Ideal Domain, Divisor chain condition, Unique Factorization Domains, examples, and counter examples, Polynomial rings over domains, Eisenstein's irreducibility criterion, Unique factorization in polynomial rings over U.F.D.s.
Unit 4. Fields, Finite fields, Field extensions, Galois group.

Books Recommended:

1. J.A. Gallian - "Contemporary Abstract Algebra", Narosa Publication.
2. N. Jacobson - "Basic Algebra", Vol.1, Hindustan Publishing Co., New Delhi.
3. Ramji Lal - "Fundamentals in Abstract Algebra", Chakra Prakashan, Allahabad, 1985.
4. I.N. Herstein - "Topics in Algebra", Wiley Eastern Ltd., N.D., 1975.
5. D.S. Dummit and R.M. Foote - "Abstract Algebra", John Wiley, N.Y.
6. J.B. Fraleigh - "Abstract Algebra", Narosa Publication.

MTH103 - Real Analysis

Unit 1. Functions of several variables: Concept of functions of two variables, Simultaneous and iterated limits in functions of two variables, Partial derivatives: Definition and examples, Existence and continuity, Interchange of order of differentiation, Directional derivatives.
Unit 2. Composite functions, Continuity of function of two variables, Differentiability of functions of two variables, Taylor's Theorem.
Unit 3. Definition and examples of metric space, pseudo metric, discrete and usual metric space, diameter of a set. Open and closed sets in a metric space, Interior point, Limit point, Adherent point, Closed set, Neighbourhood, Closure of a set, Interior of a set, Bolzano-Weirstrass theorem, Complete metric space, Cauchy sequence, Convergent sequence, Bounded Sequence.
Unit 4. Separated sets, Connected and disconnected sets, Continuity and connectedness, Compactness, Compactness and uniform continuity, Continuity and Uniform continuity in a metric space.

Books Recommended:

1. S.C. Malik and Savita Arora: "Mathematical Analysis".
2. W. Rudin: "Principles of Mathematical Analysis".
3. T.M. Apostol: "Mathematical Analysis".
4. S.K. Mapa: "Introduction to Real Analysis"
5. Terence Tao: "Real Analysis"
6. J. R. Munkres: "Analysis on Manifolds".
7. E.T.Copson, "Metric Space"

MTH104 - Differential Geometry and Tensor Calculus

Unit 1. Curve in space, parameterized curves, Regular curves, Helices, Arc length, Re-parameterization (by arc length), Tangent, Principal normal, Binormal, Osculating plane, Normal plane, Rectifying plane, Curvature torsion of smooth curves, Serret-Frenet formulae, Frenet approximation of space curve.
Unit 2. Order of contact, Osculating circle, Osculating sphere, Spherical indicatrices, Involute and Evolutes, Bertrand Curves, Intrinsic equations of space curves, Isometries of R^{3}, Fundamental theorem of space curves, Surfaces in R^{3}.
Unit 3. Curvature of curves on surfaces, Normal curvature, Principal curvatures, Geometric interpretation of principal curvatures, Euler theorem, Mean curvature, Lines of curvature, Rodrigue's formula, Umbilical points, Minimal surfaces, Definition and examples, Gaussian curvature, Intrinsic formulae for the Gaussian curvature, Isometries of surfaces.
Unit 4. n-dimensional real vector space, Covariant vectors, Contravariant vectors, Kronecker delta, Fundamental algebraic operations: Addition, Multiplication, Tensor product, Dual vector space, Second order tensors, Tensors of type (r, s), Symmetry and Skew symmetry of tensors, Contraction, and Inner product, Quotient law of tensors, Christoffel symbol.

Books Recommended:

1. C.E. Weatherburn: "Riemannian Geometry and Tensor Calculus".
2. Andrew Pressley: "Elementary Differential Geometry".
3. J.A. Thorpe: "Elementary Topics in Differential Geometry".
4. D. Somasundaram: "Differential Geometry, A First Course".
5. T.J. Willmore: "An Introduction to Differential Geometry".
6. N. J. Hicks, Notes on Differential Geometry, Van Nostrand.

VIII Semester

MTH201 - Linear Algebra

Unit 1. A brief review of vector space, Inner products, Orthogonality, Best approximations, Projections, CauchySchwartz inequality.
Unit 2. Adjoint of a linear transformation, Self-adjoint transformations, Unitary operators. Normal operators: Definition and properties and Spectral theorem.
Unit 3. Eigen vectors and eigen values of a linear operator, Minimal polynomial of a linear operator and its relations to characteristic polynomial, Cayley-Hamilton theorem.
Unit 4. Bilinear forms, Symmetric and skew-symmetric bilinear forms, Groups preserving bilinear forms.

Books Recommended:

1. Sheldon Axler - "Linear Algebra Done Right".
2. Kenneth Hoffman and Ray Kunze - "Linear Algebra".
3. Serge Lang - "Linear Algebra".
4. Gilbert Strang - "Linear Algebra and its Applications".
5. Hadley - "Linear Algebra".
6. H. Helson - "Linear Algebra", Hindustan Book Agency, New Delhi, 1994.

MTH202 - Complex Analysis

Unit 1. Conformal mappings, Power series representation of analytic functions, Analytic functions as mappings, Riemann sphere, Linear transformations, Mobius transformation, Cross ratios, Mobius transformation on circles.
Unit 2. Analytic Continuation: Direct Analytic Continuation, Monodromy theorem, Poisson Integral Formula, Analytical Formula, Analytical Continuation via Reflection.
Unit 3. Entire functions, Hadmard's three circle theorem, Meromorphic functions, The argument principle, Rouche's theorem, Schwarz lemma, The open mapping theorem.
Unit 4. Linen of half planes in complex plane, Extended complex plane, Stereographic projection. Maximum modulus principle, Little Picard Theorem, Great Picard Theorem.

Books Recommended:

1. Lars V. Ahlfors - "Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable", McGraw-Hill Education.
2. John B. Conway - "Functions of One Complex Variable I".
3. Walter Rudin - "Real and Complex Analysis".
4. S. S. Ponnusamy and Silverman J. - "Complex Variables with Applications".
5. Denish G. Rill and Patrick D. Shanahan - "Complex Analysis", Jones \& Bartlett Learning.
6. D. Sarason - "Complex Function Theory", Hindustan Book Agency, Delhi, 1994.

MTH203- Differential Equations

Unit 1. Existence and uniqueness of solutions of initial value problems for first order ordinary differential equations, Singular solutions of first order ODEs, System of first order ODEs., General theory of homogeneous and nonhomogeneous linear ODEs, variation of parameters, Sturm-Liouville boundary value problem, Green's function, Wronskians.
Unit 2. Formation of P.D.Es. First order P.D. Es, Classification of first order, P.D.Es, Complete, general, and singular integrals, Lagrange's or quasi-linear equations, Integral surfaces through a given curve. Orthogonal surfaces to a given system of surfaces, Characteristic curves.
Unit 3. Pfaffian differential equations, Compatible systems, Charpit's method, Jacobi's Method. Cauchy problem for first order PDEs.
Unit 4. Classification of second order P.D.Es, Linear PDEs equations with constant coefficients, General solution of higher order PDEs with constant coefficients, Reduction to canonical forms.

Books Recommended:

1. M.D. Raisinghania - "Advanced Differential Equations".
2. D.P. Choudhary and H.I. Freedman - "A Course in Ordinary Differential Equations".
3. T. Amaranth - "An Elementary Course in Partial Differential Equations".
4. Erwin Kreyszig - "Advanced Engineering Mathematics".
5. S. L. Ross - "Differential Equations", Wiley Publications.
6. G. F. Simmons - "Differential Equations with applications and historical notes", CRC Press.

MTH204- Operations Research-I

Unit 1. Introduction to Operations research, methodology of Operations research, Features of Operations research problems, Different models in Operations research, Opportunity, and shortcomings of Operations research's approach.
Unit 2. Game theory: two persons zero sum game, game with saddle points, rule of dominance; algebraic, graphical, and linear programming, concept of mixed strategy. Sequencing problems: processing of n jobs through 2 machines, n jobs through 3 machines, 2-jobs through m machines, n jobs through m machines.
Unit 3. Revised simplex method and bounded variable problems. Pure and Mixed Integer Programming, Gomory's cutting plane method for Integer Programming, Fractional Cut Method, Sensitivity analysis.
Unit 4. Dynamic Programming under certainty, Nonlinear Programming Method, Quadratic Programming, KuhnTucker conditions.

Books Recommended:

1. Hamdy A. Taha: "Operations Research: An Introduction".
2. Wayne L. Winston: "Operations Research: Applications and Algorithms".
3. Richard Bronson: "Operations Research: A Practical Introduction".
4. Kanti Swarup, P.K. Gupta, Man Mohan: "Operations Research: Theory and Applications".
5. S. Kalavathy: "Operations Research".
6. S. S. Rap: "Optimization Theory and Applications", Wiley Eastern.

GRADUATION -1 ${ }^{\text {st }}$ Year (SEMESTER-I/II)

Minor Elective: Probability

GRADUATION -2 ${ }^{\text {nd }}$ Year (SEMESTER- III/IV)

Minor Elective: Financial Mathematics

GRADUATION -4 ${ }^{\text {th }}$ Year (SEMESTER- VII/VIII)

Degree with Honours /Research

Minor Elective: Research Methodology

Suggested Readings:

1. Ethics in Research and Publication Ethics: Philosophy and ethics, Scientific conduct, Publication ethics.
2. Write Mathematics Right by L. Radhakrishna, Narosa Publishing House, 2003.

This course can be opted as an elective by the students of following subjects: Engr. and Tech. (UG), B.Sc. (C.S.) and other subject's students.

Suggested Continuous Evaluation Methods: Max. Marks: 25		
S.No.	Assessment Type	Max. Marks
$\mathbf{1}$	Class Tests	$\mathbf{1 0}$
$\mathbf{2}$	Online Quizzes/Objective Tests/ Presentation	$\mathbf{5}$
$\mathbf{3}$	Attendance	$\mathbf{5}$
$\mathbf{4}$	Assignment	$\mathbf{5}$
Course perquisites: To study this course a student must have studied Mathematics.		

[^0]: Suggested Readings (Part-A Real Analysis and Complex Analysis):

 1. Walter Rudin: Principle of Mathematical Analysis (3rd edition) McGraw-Hill Kogakusha, 1976, International Student Edition.
 2. K. Knopp: Theory and Application of Infinite Series.
 3. T. M. Apostol: Mathematical Analysis, Narosa Publishing House, New Delhi, 1985.
 4. S. C. Malik and Savita Arora, Mathematical Analysis, New Age International Pvt. (Ltd), 2012.
 5. J. B. Conway: Functions of One Complex Variable, Narosa Publishing House, 1980.
 6. E. T. Copson: Complex Variables, Oxford University Press.
 7. L. V. Ahlfors: Complex Analysis, McGraw-Hill, 1977.
 8. D. Sarason: Complex Function Theory, Hindustan Book Agency, Delhi, 1994..
 9. Suggested digital platform: NPTEL/SWAYAM/MOOCs

 This course can be opted as an elective by the students of following subjects: Engr. And Tech.(UG), Economics (UG/PG), B.Sc.(C.S.)

